FUNCIONES EXPONENCIALES
f
eU
e
RX
dx
= --;-
a
real or complex
.f
xe"' dx
=
e
U
[~-
al, ]
a
real or complex
f '
u
d
u
[x'
2x
2]
x
e x=e
-- - + -
a a
2
a
3
a
real or complex
f
eU
en
sin(x)dx
=
- ,- [asin(x) -
cos(x)]
n
+1
f
e"'
e"'
cos(x)dx
=
- ,-[ncos(x)+sin (x)]
n
+1
INTEGRALES DEFINIDAS
l -
J,- sin(X)"
Sa(x)dx
=
--dx
= –
o
o
x
2
I:
Sa '
(x)dx
=
,,/ 2
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
175
1...,165,166,167,168,169,170,171,172,173,174 176,177,178,179,180,181,182,183,184,185,...196