1-26
El resultado es
P
+
Q " (18. 122, 2.134)
La magnitud del vector P
+
Q
es
I P+QI=~(18. J22)2+(2.134)2
= 18.247
y
su dirección,
atan2(18.
J
22,
2.
J
34) " 6.716°
P
+
Q " (18.247
L 6.716°)
~~
En este ejemplo vamos a considerar una
superposición (o suma) especial de velocidades: la del
aire atmosférico
y
la
de un avión en vuelo.
Supongamos que
el
empuje de las turbinas del
avión es tal que en aire quieto enfilaría el avión hacia
la dirección norte con una velocidad de 200 kilómetros
por hora,
y
que el avión vuela dentro en un viento de
50 kilómetros por hora que sopla en dirección noreste
(fig.
40). El efecto del viento consiste en desviar el
avión de la dirección nor te en un pequeño ángulo
!J,
el
cual se obtiene geométricamente superponiendo los
vectores velocidad de avión
y
viento según la
construcción de
suma vectorial,
tal como se muestra en
la Fig. 41.
Fig.40
La velocidad del avión con respecto a Tierra (la
modificada por el viento) se calcula gráficamente
midiendo la longitud de la flecha que va del inicio de
la primera Oecha a la punta de la segunda (flecha
punteada en la Fig. 41).
50
km
h
,
~238
km
,
h
,
200
km
t-
8 = 8.54
0
h
y
L.x
Fig.41
Por supuesto, también se puede calcular
analíticamente aplicando la regla para sumar vectores,
como haremos a continuación.
Sean v la velocidad del avión
y
U la velocidad
del viento. Colocando el eje Y paralelamente al eje
longitud inal del avión tendríamos (en unidades de
kilómetros por hora):
V "
(O,
200)
V "
(50 cos 45°, 50 sen 45°)" (35.35, 35.35)
Superposición de velocidades:
v
+
V " (O,
200)
+
(35.35, 35.35) " (35.35,235.35)
Por lo tanto, la magnitud
y
dirección de la suma son
Iv
+
V I
" 1(35.35, 235.35)1 " 238
e"
atan2(35.35, 235.35) " 81.46'
con lo que la desv iación pedida es
b "
90° - 81.46° " 8.54'
Consideremos dos vectores A
y
B de
magnitudes fijas. Queremos dirigir estos vectores de
tal manera que e-l vector suma A
+
B:
Tenga magni tud máxima.
Tenga magnitud mínima.
/
Que-remos además calcular la magnitud de A
+
B
dado que estos vectores forman un ángu lo dado
"X".
Es evidente que para obtener el máximo valor
de la magnitud de A
+
B hay que colocar A y B
paralelamente
y
en la misma dirección, como vemos